IBM Unveils 433-Qubit Osprey Chip
Next year 2023 entanglement hits the kilo-scale with Big Blue’s 1,121-qubit Condor
End 2022, IBM announced Osprey, a 400+ qubit quantum processor. IBM aims to achieve quantum systems with 4,000+ qubits by 2025, unlocking supercomputing capabilities and tackling increasingly complex computational problems.
IBM Osprey has the largest qubit count of any IBM quantum processor, more than tripling the 127 qubits on the IBM Eagle processor unveiled in 2021. This processor has the potential to run complex quantum computations well beyond the computational capability of any classical computer.
IBM has built the largest quantum computer yet. Dubbed Osprey, it has 433 qubits, or quantum bits, which is more than triple the size of the company's previously record-breaking 127-qubit computer and more than eight times larger than Google's 53-qubit computer Sycamore.
Exclusive—IBM Shares Details of Its 400+ Qubit Quantum Processor
At the IBM Quantum Summit in Nov. 2022, IBM announced Osprey, a 400+ qubit quantum processor. IBM aims to achieve quantum systems with 4,000+ qubits by 2025, unlocking supercomputing capabilities and tackling increasingly complex computational problems.
We spoke with Oliver Dial, physicist and chief quantum hardware architect at IBM, involved in developing the new 400+ qubit quantum processor.
IBM Osprey - The World's Most Powerful Quantum Computer
The 433-qubit IBM Osprey chip
The 433-qubit IBM Osprey chip. Image courtesy of Ryan Lavine/IBM
Why This Breakthrough Quantum Computer From IBM Will Change Computing Forever
Dial has significant experience developing high-frequency electronics, cryogenic systems, and semiconductor spin qubits. At IBM, he specializes in superconducting qubits, researching their underlying physics and collecting system-level metrics.
A Quantum Processor with 400+ Qubits
IBM’s new quantum processor contains 433 qubits known as transmons, which are essentially superconducting resonators that can store 0 or 1 microwave photons. These qubits can be manipulated by applying microwave pulses of different frequencies to them from outside the processor.
“Our qubits are connected to each other with busses. Different qubits directly connected by busses have different frequencies, so we can control them independently,” Dial explained. “While transmons are a common qubit type, we use fixed-frequency transmons—meaning the frequency of microwaves we use to control them is determined when we make the device. We can’t tweak it during testing. This gives our devices great coherence times but puts a lot of emphasis on fabricating things accurately, so we can meet that frequency requirement.”
The researchers' device is supported by passive microwave circuitry, which does not deliberately absorb or emit microwave signals but redirects them. Examples of on-chip passive circuitry include microwave resonators that measure the state of the qubits, filters that protect the qubits from decaying out of a drive line, and transmission lines (in other words, wires) that deliver microwave signals to the qubits and to and from the readouts.
Presentation of the 433-qubit IBM Osprey chip
Dario Gil (IBM senior VP and director of research), Jay Gambetta (IBM fellow and VP of quantum computing), and Jerry Chow (IBM fellow and director of quantum infrastructure) presenting the 433-qubit IBM Osprey chip. Image courtesy of Ryan Lavine/IBM
“We build all this circuitry on chip with the qubits, using much of the same techniques as what’s called back-end-of-line wiring in traditional CMOS processes,” Dial said. “However, all these techniques must be modified to use superconducting metals.”
These multi-layered devices place qubits on a single chip, which is connected to a second chip known as the interposer through superconducting bonds. The interposer has readout resonators on its surface and multi-level wiring buried inside it, which delivers signals into and out of the devices.
IBM delivers its 433-qubit Osprey quantum processor
IBM delivers its 433-qubit Osprey quantum processor. It has the largest qubit count of any IBM quantum processor, more than tripling the 127 qubits on the IBM Eagle processor unveiled in 2021. Image courtesy of Connie Zhou/IBM
This unique design creates a clear separation between qubits, readout resonators, and other circuitry, reducing microwave loss, which the qubits are very sensitive to. Ultimately, this is what allowed the researchers to pack so many qubits on a single chip to maintain good coherence.
“We developed this general structure in Eagle, a 127-qubit processor that we built last,” Dial said. “Eagle was the first integration of all these technologies, while Osprey proves that we can use them to make processors larger than anything we’ve made before. A lot of what’s new on Osprey isn’t what’s on the chip itself—which is a refinement of Eagle—but what surrounds it.”
IBM Quantum System Two
A More Sophisticated Design
IBM's new quantum processor operates at very low temperatures of approximately 0.02 degrees Kelvin. The team thus had to identify a strategy to deliver hundreds of microwave signals into this low-temperature environment, considering the little cooling power of its processor’s refrigerator ( about 100 µW of power).
“The cables that deliver microwave signals to our processor are a particular problem, as most things that conduct electricity well also conduct heat and thus compromise the insulation of our refrigerator,” Dial explained. “To tackle this problem, our Eagle processor used over 600 cables going between different stages of the fridge, each assembled, wired, and tested by hand. In Osprey, we replace most of these cables with flexible ribbon cables created using standard printed circuit board techniques. Each one of these cables replaces many individual cables, connectors, and components—simplifying our design and thus increasing the processor’s reliability.”
The Osprey processor is supported by a new generation of control electronics, instruments outside of the refrigerator that create an interface between classical and quantum computing tools. These tools, which build on IBM’s previous work, generate microwave control signals for the new chip and interpret signals that come back.
IBM’s new processor
IBM’s new processor has the potential to run complex quantum circuits beyond what any classical computer would ever be capable of. For reference, the number of classical bits that would be necessary to represent a state on the IBM Osprey processor exceeds the total number of atoms in the known universe. Image courtesy of Connie Zhou/IBM
“We achieved a new and simpler design for generating the analog signals based on direct digital synthesis and water cooled to increase the density of the electronics—letting us reach a whopping 400 qubits of control per rack,” Dial said.
The Osprey processor is based on a platform that was refined over several years, with technologies that IBM already tested and implemented on its Falcon, Hummingbird, and Eagle processors. The primary advancements from these previous processors are the wiring and control systems outside of the chip, as well as the scaled-up software stack.
“We’re also incorporating some learning into how we tune the device (i.e., its gate times, powers, etc.), which we think will make large sections of the device have much better average fidelities than what we’ve typically managed in the past,” Dial said. “We think this will make it an ideal platform for studying error mitigation—running multiple copies of a circuit with slight variations to generate more accurate expectation values.”
IBM Quantum State of the Union 2022
Approaching the Quantum-centric Supercomputing Era
The new processor created by Dial and his colleagues is another step toward the era of quantum-centric supercomputing (i.e., when quantum computers can solve arbitrarily-scaled problems).
“When we build a classical supercomputer, we don’t build a single fast processor, but we harness many processors working in parallel, which creates flexibility to solve one large problem, or many small problems at the same time,” Dial explained. “Similarly, we want to work toward a quantum architecture that can scale up and down, solving the parts of our users’ problems that are best solved on a quantum computer with a quantum computer, and solving the parts of their problems that are best solved on a classical with a classical computer.”
To allow users to harness the strengths of both quantum and classical computing technologies, IBM is working on a range of middleware and software tools that enable better communication between these different types of computing systems.
“We use the example of circuit knitting a lot when explaining this idea,” Dial said. “Our goal here is to take a single quantum circuit that is too large to run on a single quantum processor and break it up into smaller pieces that can be run on multiple processors. If all we have is classical communication between processors, we can do this, but the overhead (number of extra times we need to run the circuit) is large. If we expand that classical communication to include real-time classical communication (the ability to measure a qubit on one processor, turn it into classical data, move it to another processor, and change what we do on that second quantum processor all within a few microseconds), new advanced knitting options become possible. This richer communication allows better scaling, but now the computers need to be close enough to make this high-speed communication possible—distances of meters, not miles.”
Dial and his colleagues are now working on a new technology known as I-couplers, set to be unveiled by 2024, which could make the overhead vanish entirely. I-couplers are microwave links between quantum processors that can be cooled down to the devices’ milli-Kelvin temperatures so that they can be literally frozen into a system when the processor is cooled down.
“The final, very long-term project we’re working on in this area is called transduction: moving quantum information with optical photons instead of microwaves,” Dial added. “This would allow us to make reconfigurable quantum networks, but it’s a much more difficult technology to master. Nobody has fully demonstrated this in our systems.”
Other Advances and Future Outlooks
At the IBM Quantum Summit 2022, IBM also unveiled the Quantum System Two update, a platform that supports the operation of larger processors and the diverse types of communication that would characterize a quantum-centric supercomputer. Combined with its new processor and other tools, this platform paves the way for yet another year of exciting quantum technology advancements.
“There are things we are continually working to improve: our qubit coherence times, our gate fidelities, the density and crosstalk of our devices,” Dial said. “For the next year or two, we will also focus on two big hardware-centric projects. One involves various types of communication between quantum processors: real-time classical, chip-to-chip quantum gates (quantum multi-chip-modules), and long-range quantum communication—the basic ingredients for the quantum-centric supercomputer. The other is the introduction of cryo-CMOS control to our production systems.”
Currently, IBM’s control hardware is based on field-programmable gate arrays (FPGAs), which increases its cost and limits attainable qubit densities. The team hopes that moving to CMOS-based control components integrated into the refrigerator will simplify wiring and signal delivery problems in quantum computers, bringing them closer to their goal of developing a system with a few thousand qubits.
“As we talk about tens of thousands of qubits, error correction becomes more important,” Dial noted. “We believe we can get more efficient error correcting codes, but this will require more complicated connections between our qubits than those we have today. Right now, our heavy-hex devices (and most devices people make) have 2D arrays of qubits. Each qubit is connected to other nearby qubits on the surface of the chip in some repeating pattern. We are beginning investigations into creating connections between distant qubits on the chip and crossovers between those connections, which could pave the way toward machines that can implement efficient fault tolerant codes.”
IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two
Company Outlines Path Towards Quantum-Centric Supercomputing with New Hardware, Software, and System Breakthrough
IBM (NYSE: IBM) kicked off the IBM Quantum Summit 2022, announcing new breakthrough advancements in quantum hardware and software and outlining its pioneering vision for quantum-centric supercomputing. The annual IBM Quantum Summit showcases the company's broad quantum ecosystem of clients, partners and developers and their continued progress to bring useful quantum computing to the world.
"The new 433 qubit 'Osprey' processor brings us a step closer to the point where quantum computers will be used to tackle previously unsolvable problems," said Dr. Darío Gil, Senior Vice President, IBM and Director of Research. "We are continuously scaling up and advancing our quantum technology across hardware, software and classical integration to meet the biggest challenges of our time, in conjunction with our partners and clients worldwide. This work will prove foundational for the coming era of quantum-centric supercomputing."
At the Summit, the company unveiled the following new developments:
‘IBM Osprey’ - IBM’s new 433-quantum bit (qubit) processor
IBM Osprey has the largest qubit count of any IBM quantum processor, more than tripling the 127 qubits on the IBM Eagle processor unveiled in 2021. This processor has the potential to run complex quantum computations well beyond the computational capability of any classical computer. For reference, the number of classical bits that would be necessary to represent a state on the IBM Osprey processor far exceeds the total number of atoms in the known universe. For more about how IBM continues to improve the scale, quality, and speed of its quantum systems, read Quantum-Centric Supercomputing: Bringing the Next Wave of Computing to Life.
The Next Wave - IBM Quantum Summit 2022 Keynote
New quantum software addresses error correction and mitigation
Addressing noise in quantum computers continues to be an important factor in adoption of this technology. To simplify this, IBM released a beta update to Qiskit Runtime, which now includes allowing a user to trade speed for reduced error count with a simple option in the API. By abstracting the complexities of these features into the software layer, it will make it easier for users to incorporate quantum computing into their workflows and speed up the development of quantum applications. For more details read Introducing new Qiskit Runtime capabilities — and how our clients are integrating them into their use cases.
IBM Quantum System Two update – IBM’s next-generation quantum system
As IBM Quantum systems scale up towards the stated goal of 4,000+ qubits by 2025 and beyond, they will go beyond the current capabilities of existing physical electronics. IBM updated the details of the new IBM Quantum System Two, a system designed to be modular and flexible, combining multiple processors into a single system with communication links. This system is targeted to be online by the end of 2023 and will be a building block of quantum-centric supercomputing — the next wave in quantum computing which scales by employing a modular architecture and quantum communication to increase its computational capacity, and which employs hybrid cloud middleware to seamlessly integrate quantum and classical workflows.
New IBM Quantum Safe technology:
As quantum computers grow more powerful, it is crucial that technology providers take steps to protect their systems and data against a potential future quantum computer capable of decrypting today's security standards. From offering the z16 system with quantum safe technology, to contributing algorithms in connection with the National Institute of Standards and Technology's (NIST) goal for standardization by 2024, IBM offers technology and services with these security capabilities. At the Summit, IBM and Vodafone announced a collaboration to explore how to apply IBM's quantum-safe cryptography across Vodafone's technology infrastructure.
Client & Ecosystem Expansion: Growth of IBM Quantum Network: IBM also announced today that German conglomerate Bosch has joined the IBM Quantum Network to explore a variety of quantum use cases. Other recent additions to the network include multinational telco Vodafone to explore quantum computing and quantum-safe cryptography, French bank Crédit Mutuel Alliance Fédérale to explore use cases in financial services, and Swiss innovation campus uptownBasel to boost skill development and promote leading innovation projects on quantum and high-performance computing technology. These organizations are joining more than 200 organizations — and more than 450,000 users — with access to the world's largest fleet of more than 20 quantum computers accessible over the cloud.
"The IBM Quantum Summit 2022 marks a pivotal moment in the evolution of the global quantum computing sector, as we advance along our quantum roadmap. As we continue to increase the scale of quantum systems and make them simpler to use, we will continue to see adoption and growth of the quantum industry," said Jay Gambetta, IBM Fellow and VP of IBM Quantum. "Our breakthroughs define the next wave in quantum, which we call quantum-centric supercomputing, where modularity, communication, and middleware will contribute to enhanced scaling computation capacity, and integration of quantum and classical workflows."
Statements regarding IBM's future direction and intent are subject to change or withdrawal without notice and represent goals and objectives only.
Quantum Computing: Now Widely Available!
IBM is a leading global hybrid cloud and AI, and business services provider, helping clients in more than 175 countries capitalize on insights from their data, streamline business processes, reduce costs and gain the competitive edge in their industries. Nearly 3,800 government and corporate entities in critical infrastructure areas such as financial services, telecommunications and healthcare rely on IBM's hybrid cloud platform and Red Hat OpenShift to affect their digital transformations quickly, efficiently, and securely. IBM's breakthrough innovations in AI, quantum computing, industry-specific cloud solutions and business services deliver open and flexible options to our clients. All of this is backed by IBM's legendary commitment to trust, transparency, responsibility, inclusivity, and service. For more information, visit https://www.ibm.com/quantum.
In 2021, IBM unveiled Eagle, the first quantum processor with more than 100 qubits. Now the company has debuted Osprey, which possesses more than three times as many qubits. The advances IBM made to triple the number of qubits on a chip in just one year suggest Big Blue is on track to deliver Condor, the world’s first universal quantum computer with more than 1,000 qubits, in 2023, the company says.
Quantum computers can theoretically find answers to problems that classical computers would take eons to solve. The more components known as qubits are quantum-mechanically linked or entangled together in a quantum computer, the more computations it can perform, in an exponential fashion.
The qubit numbers of IBM’s quantum computers have steadily grown over time. In 2016, the company put the first quantum computer on the cloud for anyone to experiment with—a device with 5 qubits, each a superconducting circuit cooled to near-absolute-zero temperatures of roughly 20 milliKelvin (-273 degrees C). In 2019, the company debuted the 27-qubit Falcon; in 2020, the 65-qubit Hummingbird; and in 2021, the 127-qubit Eagle.
“Each one of the improvements we used led to a little improvement in speed, but once we lost all these bottlenecks, we saw a major improvement in speed.”
—Oliver Dial, IBM
Next year, IBM aims to launch its 1,121-qubit Condor processor, which stands poised to become (barring any surprises in the meantime) the world’s largest general-purpose quantum processor. The new Osprey chip, unveiled at IBM’s Quantum Computing Summit on 9 November, reveals key steps the company is taking in order to scale up to this ambitious goal.
One strategy that began with Eagle and continues with Osprey is to separate the wires and other components needed for readout and control onto their own layers. This multi-level wiring helps protect infamously fragile qubits from disruption, helping the processor incorporate larger numbers of them.
“We probably didn’t need all that technology to deploy a 100-qubit device, but doing all that helped set up Osprey and Condor,” says Oliver Dial, IBM Quantum’s chief hardware architect. “We now have the technology in hand to go way beyond 100 qubits.”
Osprey possesses two major advantages over Eagle outside the chip, Dial notes. One is replacing the “quantum chandelier” of microwave cables IBM used with its previous quantum processors with flexible ribbon cables, the kind you might find that carries signals between, for instance, the motherboard and screen if you open up a cellphone or a laptop, he says.
Chart with images and labels shows IBM Falcon (27 qubits), IBM Hummingbird (65 qubits), IBM Eagle (127 qubits), IBM Osprey (433 quibits).IBM’s 433-qubits Osprey quantum processor more than triples the 127 qubits on the IBM Eagle processor unveiled in 2021.CONNIE ZHOU/IBM
“All these microwave cables, which get microwave signals in and out of the refrigerator where the qubits are stored, are not very scalable,” Dial says.
Osprey’s flexible ribbon cables are adapted to cryogenic environments. The electrical and thermal resistance of the cables are tailored to help microwave signals flow while not conducting too much heat that might interfere with the qubits. This led to a 77 percent increase in the number of connections leading to the chip—“basically, almost twice as many wires”—which will help IBM scale up its quantum computers, Dial says.
The other major advantage seen with Osprey is a new generation of the control electronics that send and receive microwave signals to and from the quantum processor. Whereas Dial says IBM’s first phase of control electronics (2019-’21) enjoyed a greater flexibility, Osprey’s control electronics “are more specialized, more tailored to quantum devices, to produce the exact signals we need, the frequencies we need, the power we need,” Dial says.
“We play Osprey to get on the cloud the middle of next year.”
—Oliver Dial, IBM
Osprey: The World's Largest Quantum Computer
These improvements “have reduced cost, which is an important consideration as we scale up,” Dial says. “With our first generation of five and 20 qubit devices, we needed an entire rack of control electronics, and with Eagle we saw 40 qubits per rack. Now we can control more than 400 qubits with one rack of equipment.” He adds that qubit density has also increased with Osprey.
IBM’s new control electronics include a cryo-CMOS prototype controller chip implemented using 14-nanometer FinFET technology that runs at roughly 4 Kelvin (-269.15 degrees C). (According to IBM, it is expected to be implemented into future generations of their quantum computer control electronics.) The prototype chip uses an application-specific integrated circuit (ASIC) design that is less bulky and power-hungry than previous field-programmable gate array (FPGA) approaches. “Instead of about 100 watts per qubit like we needed before, we only need about 10 milliwatts, so we can fit far more qubits onto a chip,” Dial says.
In addition, recent advances in microwave signal generation and reception from the telecommunications and defense industries “means direct digital synthesis is finally affordable,” Dial says. “Instead of generating signals at a few hundred megahertz and mixing to 5 gigahertz, you can now directly generate at 5 gigahertz, which reduces the number of components and increases simplicity.”
These hardware improvements—along with other factors, such as better methods to handle quantum computing workloads, and faster device drivers—have led to a major boost in speed. Based on an IBM quantum computing speed metric known as circuit layer operations per second (CLOPS), the company has gone from 1,400 to 15,000 CLOPS with its best systems, Dial says. (Quantum programmers run quantum algorithms on quantum computers that are made up of quantum circuits, which describe sequences of elementary operations, called quantum gates, that are applied on a set of qubits. CLOPS is a measure of the speed at which a quantum computer runs quantum circuits.)
“Quantum chandelier” no more: IBM says its Osprey processor introduces a high-density control signal delivery with flex wiring, pictured here.CONNIE ZHOU/IBM
“Each one of the improvements we used led to a little improvement in speed, but once we lost all these bottlenecks, we saw a major improvement in speed,” Dial says.
Before Osprey becomes widely available for use, IBM is spending extra time setting up its control electronics and calibrating the system. “We plan Osprey to get on the cloud the middle of next year,” Dial says.
IBM is also preparing to include optional error mitigation techniques within the cloud software for its quantum computers that can essentially trade speed for more accurate results. “Instead of pushing complexity onto the user, we’re building these capabilities in the back end to take care of these details,” Dial says. “By the end of 2024, we expect that error mitigation with multiple Heron chips running in parallel in our ‘100 by 100 initiative’ can lead to systems of 100 qubits wide by 100 gates deep, enabling capabilities way past those of classical computers.”
IBM also announced that it was partnering with communications technology company Vodafone to develop post-quantum cryptography that can defend against future quantum computers that could rapidly break modern cryptography. “We’re working on crypto-agility, the ability to move between cryptographic schemes to acknowledge how cryptography constantly changes and advances,” Dial says.
More Information:
https://www.ibm.com/quantum/summit
https://spectrum.ieee.org/ibm-quantum-computer-osprey
https://www.popsci.com/technology/ibm-quantum-summit-osprey/
https://www.siliconrepublic.com/machines/ibm-osprey-quantum-processor-computing-summit